
These GR2x files go deeper into the mathematics and terminology needed to understand papers on general 

relativity and such.  This file describes more of the terms and operators used with tensors, and many 

miscellaneous general definitions.   

 

 
 

More on Vectors and Tensors 
 

Tensors (in general) not only have a rank, but a type.  A tensor of type (m,n) means several things.  First, it has 

m contravariant/upper indices and n covariant/lower indices.  The rank is just (m+n), which tells you how many 

indexes it has.  For example : a scalar is type (0,0) and has no rank (single number), an ordinary (contravariant) 

spacetime vector V
i
 is type (1,0) which has rank 1 (with 4 dimensions).  The metric tensor guv is type (0,2) and 

is rank 2 with 4x4 dimensions.  

 

Another way to look at a tensor is as an operator or function that takes in vectors and returns a result (as was 

mentioned in GR1a, b, and c).  If you think of a tensor like this, it takes in m covariant vectors and n 

contravariant vectors as arguments (because of the Einstein summation convention, you have to “feed” a 

covariant index with a contravariant vector, and vise-versa) and it returns a scalar.  For example : The metric 

tensor guv is type (0,2) because it takes 2 contravariant vectors and returns a scalar (their “dot product”).  The 

inverse metric tensor g
uv

 is type (2,0) and takes 2 covariant vectors and likewise returns a scalar. 

 

But, we do not have to give a tensor all the vectors it needs!  Then the result is a tensor of type (a,b), where 

a = m – #input covariant vectors  b = n – #input contravariant vectors 

For example, the Riemann tensor R
a
bcd is a (1,3) tensor that takes three contravariant vectors as inputs, and 

outputs one covariant vector.  In the diffusion formula from GR1a : Ji = – Di
j
 C, j and D is (1,1) while C, j is (1,0) 

so Ji is (0,1).  Thus J can have both a different length and direction than C. 

 

Tensors can also be contracted by summing over one upper and one lower index, turning a type (m,n) tensor 

into a type (m-1,n-1) tensor, and is often called the trace.  The Ricci scalar R = R
λ
λ is an example of this. 

 

A tensor is symmetric if it is the same when two indexes are swapped : Tαβ = Tβα = T(αβ) and anti-symmetric or 

skew-symmetric if it changes sign : Tαβ = –Tβα = T[αβ] 

 

Any tensor Tab can be split into symmetric () and anti-symmetric [] parts : 

 T(ab) = ½ (Tab + Tba) 

 T[ab] = ½ (Tab – Tba) 

The metric tensor is symmetric : g[ab] = 0 

 

There is another kind of bracket notation called “cyclic notation”, which means that the indexes should be 

rotated (with wrap-around, not changing the initial relationships) to create multiple terms with alternating signs : 

Ra[bcd]  Rabcd – Radbc + Racdb 

F[ab,c]  Fab,c – Fca,b + Fbc,a  ∂cFab – ∂bFca + ∂aFbc  

 ∇[μVν]  ∇μVν – ∇νVμ 

  

The d'Alembertian operator, □2
, is the spacetime equivalent of ∇2

 for general relativity : 

□2 = ∇μ∇μ = g
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And returns a Lorentz-invariant value.  Note : some authors use just □ to mean the exact same thing!  

 



The “exterior product” or “wedge product” Λ of two 3-D vectors is related to their cross product and to the 

determinant of the matrix formed by them.  Also, given N N-dimensional vectors, it is related to the 

area/volume/etc. of the parallelogram defined by them.   

 

 
 

The result of aΛb is called a bivector, and can be interpreted as an oriented plane segment, much as vectors can 

be thought of as directed line segments.  The wedge product has the following properties : 

 a Λ a = 0 

 a Λ b = – (b Λ a) 

 a Λ (b + c) = aΛb + aΛc  

 

 

The “dyadic product”, “tensor product”,  or “outer product” ⊗ of two vectors creates a tensor.  In matrix 

format, it is the result of multiplying the column vector u by the row vector v :  

 
 

⊗ is only used with vectors; in index notation it disappears : u
i
v

j
 (note that there is no summation!). 

 

The type of the result depends on the type of the vectors : Pij = uivj   and  P
i
j = u

i
vj (still no summation!).   

 

Taking the dyadic product of a type (a,b) tensor with a type (c,d) tensor creates a type (a+c,b+d) tensor. 

 

So any time you multiply the elements of vectors together without summation, you are making a dyadic product!  

Many authors do not show this symbol when multiplying vectors or basis terms, but for example strictly 

speaking the metric tensor is 

 g = guv(e
u
 ⊗ e

v
)    g

-1
 = g

uv
(eu ⊗ ev) 

So that (e
u
 ⊗ e

v
) creates the 4x4 “structure” of the tensor, which is then filled in by the terms guv, in the same 

way that a vector is built from its components by individual basis terms : V = V
a
ea but we usually just write V

a
. 

 

 

While rank-2 tensors of any type are often shown in matrix format, it is only the “mixed” tensor T
u

v that is 

accurately represented by a matrix.  This is because a matrix can only be formed from the dyadic product of a 

column vector u (4x1) and a row vector v (1x4) : u ⊗ vT = ui
vj  Ti

j.  While other types of rank-2 tensors can 

be displayed in a matrix format, they do not follow the rules of matrix math.  And because g
ui

giv = δ
u

v, tensors in  

T
u

v format don’t have any terms from the coordinate system in them. 

 

 



The Levi-Civita symbol ε (in N dimensions) is a tensor with N indexes such that it equals +1 if the indexes are 

an even permutation (ascending order, with wraparound, like 1,2,3… or 3,4,…,1,2) and –1 if they are an odd 

permutation (descending order), and 0 otherwise.  Some authors use η instead.   

 

Note that ε
ijk

 = εijk  and  εijk = –εjik = –εikj = –εkji  and  εijk = εjik = εkij  

 
 

For example, ε is used to create cross-products in index notation : (∇ x A)
i
 = ε

ijk
∂jAk 

 
 

 

 
 

More Terms and Definitions 
 

A linear function f(x) satisfies the following properties :  

 f(x + y) = f(x) + f(y) 

 f(a·x) = a·f(x) 

 

 



A “de-Sitter” universe is one in which the curvature R > 0 (sphere); an “anti de-Sitter” universe has curvature 

R < 0 (saddle). 
 

 

The “no-hair” theorem states that stationary, asymptotically flat black hole solutions to general relativity can be 

fully described by only their mass, electric charge, and angular momentum. 

 
A holonomic basis (or “holonomic coordinates”, or a “coordinate basis”) is one : 

which has coordinates x
a
 such that the bases are ea = ∂/∂x

a
 

whose metric tensor is g
uv

 

that represents the global spacetime 

is “in” the surface 

Otherwise, a “non(-)holonomic”, “anholonomic”, or “non-coordinate basis”, “orthonormal basis”, “tetrad”, 

“orthonormal tetrad” is one : 

whose metric tensor is the Minkowski metric  

in which the tangent basis vectors are orthonormal  

 that represents a local Lorentz frame (“rest-frame”, “proper”) 

is “in” the tangent plane 

Years ago, holonomic bases were thought to be essential to general relativity, so understanding the difference 

between contravariant and covariant was important.  More recently, it seems that non-holonomic bases are 

actually easier to use!  The formulas for the components of vectors and tensors are generally simpler, have a  

physical interpretation that’s easier to understand, and allows general relativity to relate a little better to 

quantum mechanics.  Cartesian, polar, and spherical coordinates in Euclidean space are holonomic.  But the 

spherical basis [er, eθ/r, eφ/(r sinθ)] is non-holonomic and orthonormal, so there is no difference between the 

contravariant and covariant components.  Some authors use Greek and Roman indexes to differentiate between 

holonomic and non-holonomic bases instead of between [ct,x,y,z] and [x,y,z]. 

 

A coordinate chart is a non-singular coordinate system that spans all or part of a surface.  

Points on the surface are then projected onto the chart(s).  A surface may have multiple 

coordinate charts if parts of one chart become ill-defined (like at the north and south poles of a 

spherical coordinate system).  In addition, each reference frame may have its own coordinate 

chart, in which case the chart is chosen so that locally the coordinates are a flat Minkowski 

spacetime.  The figure to the right shows four charts that completely cover the curved black 

surface.  An atlas is a collection of charts. 

 

An ansatz is the assumed general format of the solution(s) to a problem. After an ansatz has been described, the 

equations are solved to find the result and see if it works.  For example, a set of data may look like it is clustered 

about a straight line, so a linear ansatz y=ax+b could be used to find the best value of the parameters a and b, 

and then the quality of the fit determines whether the assumption was valid. 

 

Two metrics g
ab

 and ĝ
ab

 are conformal if g
ab

 = λ
2
ĝ

ab
 for some non-zero differentiable function λ(x

a
).   

 

 
 

Intrinsic vs. Extrinsic Curvature 
 

In GR1a and GR1e it was mentioned that the usual pictures of curved 

2-D surfaces  are not a perfect analogy for curved spacetime.  The 

curvature that’s visible in such an image is curving “outside” the 

surface into the 3-D space it is embedded in within, which is not the 

case with spacetime.  In GR1e, flat 2-D surfaces were presented in 

which the space is locally curved while staying globally flat, which is 



a better image.  This is the difference between internal (or intrinsic) and external (or extrinsic) curvature.   

 

In addition, it was mentioned  that a creature living in these surfaces could not tell “just by looking” that its 

space was curved.  It is very important to keep in mind that this creature is in the surface, not on the surface 

(like a bacteria in the film of a soap bubble, not a bug walking on a balloon). 

 

Extrinsic curvature is the curvature seen from “outside” the space, like when we embed a 2-D surface within a 

3-D space; intrinsic curvature is measured by the Riemann tensor in the surface and is a property of the surface,  

not how it is embedded in a higher-dimensional space. 

 

Intrinsic vs. extrinsic curvature can be very counter-intuitive : for example, 1-D lines (like circles) have no 

intrinsic curvature, because there is no loop along which we can parallel transport (which is what the Riemann 

tensor does).  The belief that a circle is curved comes from thinking of it when it is embedded in a flat 2-D plane, 

so its curvature is extrinsic.  Imagine a 1-D creature living in a line : all it knows is that it can move forward or 

backward; there is no way for it to tell whether its universe (the line) is straight or curved. 

 

The 2-D surface of a sphere has the same distance to the 3-D center (radius) at every point. More general curved 

2-D surfaces have different radii at different points (like an ellipsoid). But a radius is something that we can 

only talk about from an external point of view.  We can see that the sphere is curved because it is embedded 

within a 3-D space in which we are visualizing it.  Internally, we can only talk about the results of a parallel 

transport around a tiny parallelogram that is in the surface.  But there are ways that a creature living within the 

surface can notice that its space is not flat, such as determining that  the sum of the angles in a triangle is more 

than 180º. 

 

However, even “seeing” the curvature of a 2-D surface in a 3-D space can be misleading : if the creature lived 

in a 2-D flat surface (plane), the sum of the angles in a triangle would be exactly 180º.  If this sheet is then 

rolled up into a cylinder, the angles of a triangle still add up to 180º.  So the surface of a cylinder is not 

intrinsically curved, it just looks curved to us because of how it is embedded in the 3-D space we see it in.  

From an intrinsic point of view, a flat surface and a cylinder are no different, because if we started with a 

cylinder, we could unroll it and end up with a flat sheet.  But if we start with the surface of a sphere, we cannot 

unroll it to a flat sheet (without tearing it), so it has a different intrinsic curvature. 

 

The point is, since we cannot visualize 4-D spacetimes, it is very useful to present pictures of curved 2-D 

surfaces embedded within a 3-D space, but these visual analogies can be misleading. When we explore our 4-D 

spacetime we are like the 2-D creature : we can only look at spacetime and measure it from the inside, so we 

can only talk about its internal curvature.  And we cannot assume the existence of any higher dimensional space 

in which it is embedded. 

 

 
 

Flat Spacetimes 
 

There are actually several different definitions of what it means for a spacetime to be “flat”. 

 

If there is a coordinate system for which the metric components g
μν

 are constant everywhere, then ∂g
μν

/∂x
i
 = 0,  

so R
α

βγδ = 0 and the surface is globally flat.  This is equivalent to saying that there exists a coordinate system in 

which the metric is equal to the Minkowski metric η
ab

 = diag(1,–1,–1,–1). 

 

A solution to Einstein’s equation is asymptotically flat if the metric approaches η
ab

 far from the origin, such as 

the Schwarzschild and Kerr solutions. 

 



A solution is conformally flat if g
ab

 = λ
2
(x

a
) η

ab
, which also means the Weyl tensor is zero.  For example, in a 

constant, uniform gravitational field with acceleration a in the z direction we get the Rindler metric : 

ds
2
 = (1+az)

2
dt

2
 – dx

2
 – dy

2
 – dz

2
 

It can be shown with a transformation to the local frame of reference for a free-falling, accelerating observer 

that this metric is a multiple of η
ab

. 

 

Locally flat means that a “small enough” region around a point looks like Minkowski spacetime, at least for an 

instant.  This means that guv ≈ ηuv and ∂guv/∂x
i
 = 0, so that all first-order effects of gravity vanish, but not 

second-order effects (such as tides). 

 

A spacetime is Ricci flat if the Ricci tensor and Λ are zero (no sources of mass-energy within the region being 

considered = “vacuum solution”), but the Weyl curvature does not have to be zero.  The Schwarzschild and 

Kerr solutions are Ricci flat (because they describe the spacetime outside the object). 

 


